造成塔堵,主要是硫堵和盐堵,究其原因,主要有以下几个方面
(1)进塔气体质量差,气体夹带的煤灰、和其它杂质等,长时间积累在填料上,形成塔阻力上升,产生塔堵。
(2)脱硫吸收和析硫反应,80%是在脱硫塔内进行的,塔内析出的硫,不能及时随脱硫液带出塔外,较容易粘结在填料表面,导致气体偏流,时间久了,形成堵塔。
(3)溶液循环量小,形成脱硫塔,喷淋密度降低,一般要求喷淋密度在35-50立方米/㎡h,喷淋密度小,易使塔内填料形成干区,气液接触不好,脱硫效率下降,时间一长,就会形成局部堵塞,气液偏流,塔阻上升,造成塔堵。
(4)脱硫系统设备存在问题,一是脱硫塔填料选择不当,脱硫塔气液分布器、再分布器及除沫器结构不合理或安装出现偏差。脱硫塔在检修时,仅将塔内填料扒出清洗,而未将堵塞在除沫器和驼峰板的两驼降之间的碎填料和积硫及时清理出去,造成除沫器和驼峰板的降液孔不畅通,以致开车后,形成气体偏流,塔阻上升。
二是溶液再生有问题,硫浮选效果差,悬浮硫上升,脱硫效率下降。
主要表现在,再生设备不配套,氧化再生槽设计上存在缺陷。氧化再生槽内无分布板,如西华某公司年产4.5万吨合成氨能力,氧化再生槽为¢8000/9000/10000,高9米,可谓不小,但槽内却无分布板(至少应有1层)。有的厂氧化再生槽分布板孔径过大,一般分布板孔径为8-15㎜,孔距20-25㎜。
空气自吸式喷射器选用及安装不合理,吸空气量小,再生空气量不够,一般吹风强度在50-80立方米/㎡h。空气自吸式喷射器尾管距再生槽底距离过大,一般尾管距槽底距离为600㎜,不**过800㎜,距离过大,易形成槽内死区过多,影响再生效果,如西华某公司,新乡某公司,其空气自吸式喷射器尾管距槽底均在1500㎜以上。
空气自吸式喷射器在安装过程中,要求喷嘴、吸气管、收缩管及混合管中心轴线要一致,同心度≦1.0㎜。
(5)操作和管理不到位。操作中脱硫液温度过高,一般温度控制在38-42℃为宜,**过45℃则气泡易碎,单质硫浮选不好,生成副盐多,一般副盐三项(Na2S2O3\Na2SO4\NaCNS)之总和应小于250g/L。副反应增多,易析出结晶,形成盐堵,发生盐堵后,不仅使塔阻力上升,而重要的是引起设备严重腐蚀。发生盐堵后,再好的催化剂也是无能为力的,即使东狮牌888催化剂也只能对清洗硫堵有效果;氧化再生槽浮选出的硫泡不能及时溢流出去而在液面上停留时间过长,硫泡破碎后下降,形成溶液悬浮硫上升,由脱硫泵带至塔内,沉积在填料上,时间久了形成硫堵;溶液循环量不能保证稳定,调节过频,遇到减量时,可从溶液组份上来作些调整;吹风强度在经过操作摸索后,可稳定在量,一般不宜作过多调节,否则会影响单质硫的浮选,导致再生效果不佳。
(6)催化剂选用不当,劣质催化剂价格虽较低,但在应用过程中,在塔内析出的单质硫不能及时随溶液带出去,时间久了,形成堵塔,严重时影响生产。
脱硫泵中的应用
脱硫浆液循环泵是脱硫系统中继换热器、增压风机后的大型设备,通常采用离心式,它直接从塔底部抽取浆液进行循环,是脱硫工艺中流量、使用条件为苛刻的泵,腐蚀和磨蚀常常导致其失效。其特性主要有:
(1)强磨蚀性
脱硫塔底部的浆液含有大量的固体颗粒,主要是飞灰、脱硫介质颗粒,粒度一般为0~400µm、90%以上为20~60µm、浓度为5%~28%(质量比)、这些固体颗粒(特别是Al2O3、SiO2颗粒)具有很强的磨蚀性
(2)强腐蚀性
在典型的石灰石(石灰)-石膏法脱硫工艺中,一般塔底浆液的pH值为5~6,加入脱硫剂后pH值可达6~8.5(循环泵浆液的pH值与脱硫塔的运行条件和脱硫剂的加入点有关);Cl-可富集**过80000mg/L,在低pH值的条件下,将产生强烈的腐蚀性。
(3)气蚀性
在脱硫系统中,循环泵输送的浆液中往往含有一定量的气体。实际上,离心循环泵输送的浆液为气固液多相流,固相对泵性能的影响是连续的、均匀的,而气相对泵的影响远比固相复杂且更难预测。当泵输送的液体中含有气体时泵的流量、扬程、效率均有所下降,含气量越大,效率下降越快。
随着含气量的增加,泵出现额外的噪声振动,可导致泵轴、轴承及密封的损坏。泵吸入口处和叶片背面等处聚集气体会导致流阻阻力增大甚至断流,继而使工况恶化,必须气蚀量增加,气体密度小,比容大,可压缩性大,流变性强,离心力小,转换能量性能差是引起泵工况恶化的主要原因。试验表明,当液体中的气量(体积比)达到3%左右时,泵的性能将出现徒降,当入口气体达20%~30%时,泵完全断流。
离心泵允许含气量(体积比)极限小于5%。
高分子复合材料现场应用的主要优点是:常温操作,避免由于焊补等传统工艺引起的热应力变形,也避免了对零部件的二次损伤等;另外施工过程简单,修复工艺可现场操作或设备局部拆装修复;铭泽环保材料的可塑性好,本身具有较好的耐磨性及抗冲刷能力,是解决该类问题理想的应用技术。
6个月的供暖期,即是生产运行的过程,同时,又是对设备运行效果进行检验的过程,其中脱硫塔是公司**低排放的重要设备,为洁净生产创造重要环保指标的设备,将脱硫塔在运行期间存在的问题与缺陷情况进行汇总,为检修期相应的整改与消缺提供重要理论依据,是检修期的一项重要工作。
细节决定成败,一个小小的螺丝扣,往往会影响设备整体安全性,所以,脱硫塔基础检修中就包括将松动的螺丝及老化磨损的固件做紧固与更换。
检修现场,检修人员不放过任何一处检点,问题随检随记,水洗槽,浓缩槽底板因玻璃鳞片开裂,钢板受腐蚀,与地基出现空间问题,需及时更换;2#脱硫塔因填料结垢过多,导致格栅变形,需重新装复填料;氨罐的排污阀离地面有一定高度,导致排污困难,需浇筑适量混凝土使之与罐底平行(为防止氨罐泄漏,新增倒灌系统,如有泄漏,1#2#可以倒罐);2#脱硫塔风帽因使用时间较长腐蚀,需更换新风帽;水洗槽、浓缩槽、氨罐及1#2#脱硫塔为加强防腐工作,做玻璃鳞片;检修搅拌机等等。
检修过程中,参与人员凝神静气,高度集中注意力,以免**缺陷与问题,对于现场即时可以解决的,立行处理,需后期系统维修的,要备案,甚至设计方案进行后续处理。
检修工作以脱硫塔为典型案例顺利完成,经过检修工作后,对许多长时间停运设备,如卸氨泵、脱硝氨泵、脱硝软化水泵、补氨泵、水洗泵、浓缩槽循环泵、吸收泵、回收水泵以及氧化风机等,要分别试转,以保证运行正常,所有工作结束后,现场工作人员检查阀门位置,并做恢复工作,对罐内是否有留有工具和工作人员进行侧重检查,清理完毕,封闭人孔门,达到严密封闭。
脱硫塔的整个检修期间,为达到安全进行的目的,同时在施工地点安排监护人员监护,检查工作中存在的各种安全隐患,确保检修工作*安全进行。
造成塔堵,主要是硫堵和盐堵。究其原因,主要表现在以下几个方面:
(1)进塔气体质量差。气体夹带的煤灰、和其它杂质等,长时间积累在填料上,形成塔阻力上升,时间一长,较易产生塔堵。
(2)脱硫液的吸收和析硫反应,80%是在脱硫塔内进行的。若塔内析出的硫(特别是入口H2S含量较高时),不能及时随脱硫液带出塔外,硫颗粒就粘结在填料表面,时间久了导致气体偏流,形成堵塔。
(3)溶液循环量不够。致使塔喷淋密度降低,一般要求喷淋密度在35~50立方米/㎡.h。塔喷淋密度偏小,易使塔内填料形成干区,气液接触不好,不仅使塔脱硫效率下降,且时间一长,就会形成局部堵塞,气液偏流,塔阻上升,造成塔堵。
(4)脱硫系统设备存在问题。一是脱硫塔填料选择不当。脱硫塔气液分布器、再分布器及除沫器结构不合理或安装出现偏差。脱硫塔在检修时,仅是将塔内填料扒出来清洗,而未将堵塞在除沫器和驼峰板的两驼峰之间的碎填料和积硫及时清理出去,造成除沫器和驼峰板的降液孔不畅通,以致开车后,形成气体偏流,塔阻上升,二次停车处理。二是溶液再生有问题。单质硫浮选效果差,悬浮硫上升,脱硫效率下降。主要表现在,再生设备不配套,氧化再生槽在设计上存在诸多缺陷。比如氧化再生槽内无分布板,有则分布板孔径过大,一般分布板孔径为8~15㎜,孔距20~25㎜。分布板的作用是夹带无数气泡的脱硫液从尾管出来,便迅速形成无数气泡群,气泡群在其自身浮力的作用下,向上漂浮。同时游离在溶液中的单质硫便向气泡群周围聚集,并粘附在气泡表面。随着气泡群向上浮动,经2~3层分布板后,气泡群就会越聚越多,气泡表面粘附的单质硫相应就越多。而无分布板的再生槽气泡大且易碎,带出的单质硫就相对较少。
空气自吸式喷射器是再生系统的心脏,其选用和安装不合理均会严重影响溶液再生效果。主要表现在空气自吸式喷射器吸空气量小,造成再生空气量不够,使HS-氧化单质硫的程度变差,从而影响溶液再生效果;空气自吸式喷射器尾管出口到再生槽底部距离过大,一般尾管距槽底距离为400~600㎜,多不**过800㎜。其尾管出口到再生槽底部距离过大,易形成槽内溶液死区过多,影响再生效果;喷射器在设计上要求溶液经过喷嘴的流速要达到18~25m/s,混合管的长度是其管径的20倍;空气自吸式喷射器在安装过程中,要求喷嘴、混合管、收缩管及尾管中心轴线要一致,其同心度≦1.0㎜。空气自吸式喷射器在设计及安装上比较专业,一般不要去盲目仿制,企业在选用自吸式喷射器时,建议找专业生产厂家来订制比较妥当些。
(5)催化剂选用不当。劣质催化剂价格虽较低,但在应用过程中,我们知道,不同种类的催化剂在催化氧化过程起作用是不尽相同的,特别是氧化后形成的单质硫晶体结构不一样,它的粘度和颗粒大小就不一样。因其使HS-氧化为单质硫的程度较差而造成脱硫液悬浮硫升高,较高的悬浮硫就会粘附在塔内填料上,时间一长,就会造成堵塔,使塔阻上升,严重时影响生产。
(6)我们知道,多溶质在脱硫液中的溶解度,较其单一在水中的溶解度,均有不同程度的降低。因此,浓度高或溶解度低的副盐,在溶液温度较低的情况下,往往会形成混合性过饱和析出结晶而堵塔。所以有的厂家脱硫系统在冬季停车,一夜之间再开车时,发生恶性堵塔,通蒸汽加温而延误开车。
(7)操作和管理不到位。操作中脱硫液温度过高,一般温度控制在38-42℃为宜,**过45℃则气泡易碎,单质硫浮选不好。操作温度大于50℃则副盐生成大量增多。一般副盐三项(Na2S2O3、Na2SO4和NaCNS)之总和应小于250g/L,特别是溶液中Na2SO4的含量一般不**过40g╱L为宜。当副盐增加时,要及时采取措施(排放或引出部分脱硫液使其降温析出结晶)。否则脱硫液中过多的副盐在塔内易析出结晶,粘附在填料上,时间一长,就形成盐堵。发生盐堵后,不仅使塔阻力上升,而重要的是会引起设备严重腐蚀。脱硫塔发生盐堵后,再好的催化剂也是无能为力的,氧化再生槽浮选出的硫泡沫不能及时溢流出去,而在液面上停留时间过长,硫泡沫破碎后,其表面粘附的单质硫下沉进入贫液,造成贫液悬浮硫上升。而由脱硫泵带至塔内,沉积在填料上,时间久了就会形成硫堵;溶液循环量不能保证相对稳定,调节过频,造成系统波动较大。当遇到系统减量时,溶液循环量应保持稳定,可从溶液组份上来作些调整。当遇到系统大幅度减量时间较长时,溶液循环量可仍保持稳定运行3-4小时,以使塔内填料上沉积的硫得到冲刷;再生槽吹风强度在经过操作摸索后,可稳定在量,一般不宜作过多调节。否则会影响单质硫的浮选,导致再生效果不佳;硫回收的熔硫残液,在变成低温处理时不达标,液温高、杂质多,影响吸收与再生效果,造成贫液质量差,悬浮硫含量高。熔硫残液在回收前要沉降冷却至≤45℃,使熔硫残液中的大量副盐结晶析出在沉降冷却池,清夜再返回系统循环使用。